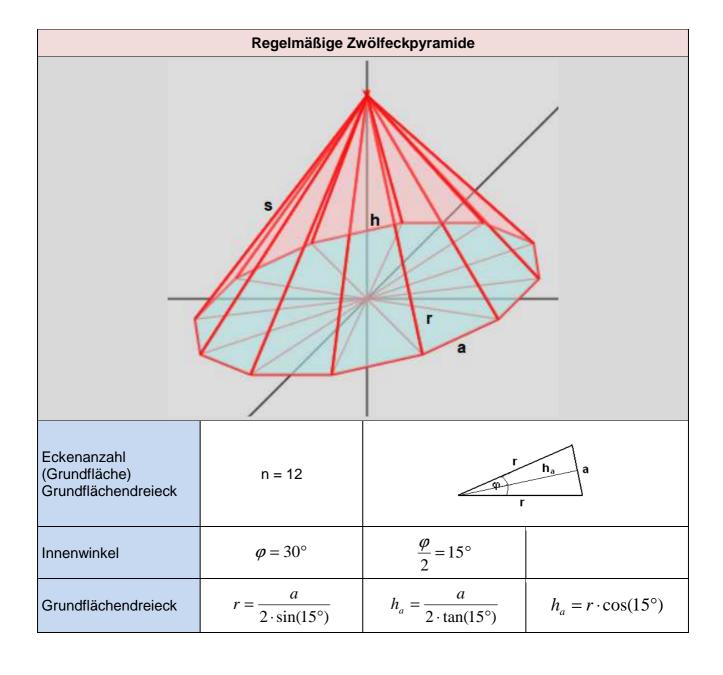
Michael Buhlmann

Mathematik-Formelsammlung

- > Geometrie
- > Pyramiden
- > Regelmäßige Zwölfeckpyramiden

Eine (gerade) <u>Pyramide</u> mit einem regelmäßigen Zwölfeck als Grundfläche ist durch die <u>Grundkantenlänge</u> a, die <u>Pyramidenhöhe</u> h, den Innenwinkel ϕ bestimmt, weiter durch die Seitenhöhe h_s, die Kantenlänge s, die Oberfläche O, die Mantelfläche M, die Grundfläche G und das Volumen V. Die <u>Grundfläche</u> G besteht aus 12 gleichschenkligen (Grundflächen-) Dreiecken mit <u>Innenwinkel</u> ϕ = $360^{\circ}/12 = 30^{\circ}$, Grundseite a, Grundflächenradius r und Dreieckshöhe h_a.



	$r^2 = h_a^2 + \left(\frac{a}{2}\right)^2$	$h_a^2 = r^2 - \left(\frac{a}{2}\right)^2$	$\left(\frac{a}{2}\right)^2 = r^2 - h_a^2$
Pyramidenumfang	u = 12a	$a = \frac{u}{12}$	
Grundfläche	$G = 6ah_a$	$h_a = \frac{G}{6a}$	$a = \frac{G}{6h_a}$
Seitenhöhe	$h_s^2 = h^2 + h_a^2$	$h^2 = h_s^2 - h_a^2$	$h_a^2 = h_s^2 - h^2$
Seitenkante	$s^2 = h_s^2 + \left(\frac{a}{2}\right)^2$	$h_s^2 = s^2 - \left(\frac{a}{2}\right)^2$	$\left(\frac{a}{2}\right)^2 = s^2 - h_s^2$
Pyramidenhöhe	$s^2 = h^2 + r^2$	$h^2 = s^2 - r^2$	$r^2 = s^2 - h^2$
Mantelfläche	$M = 6ah_s$	$h_s = \frac{M}{6a}$	$a = \frac{M}{6h_s}$
Oberfläche	O = G + M	G = O - M	M = O - G
Volumen	$V = \frac{G \cdot h}{3}$	$G = \frac{3V}{h}$	$h = \frac{3V}{G}$
Winkel zwischen Kante s und Grundkante a	$\sin\alpha = \frac{h_s}{s}$	$\cos\alpha = \frac{a}{2s}$	$\tan \alpha = \frac{2h_s}{a}$
Winkel zwischen Seitenhöhe h _s und Grundfläche G	$\sin \beta = \frac{h}{h_s}$	$\cos \beta = \frac{h_a}{h_s}$	$\tan \beta = \frac{h}{h_a}$
Winkel zwischen Kante s und Grundfläche G	$\sin \gamma = \frac{h}{s}$	$\cos \gamma = \frac{r}{s}$	$\tan \gamma = \frac{h}{r}$
Regelmäßige Zwölfeckpyramide			

www.michael-buhlmann.de / 07.2017