
Michael Buhlmann

Mathematik-Formelsammlung

- > Wahrscheinlichkeitsrechnung
- > Vierfeldertafel

Es seien zwei Ereignisse A und B mit den Gegenereignissen \overline{A} und \overline{B} gegeben. Dann lassen sich daraus die folgenden Wahrscheinlichkeitsbäume gewinnen:

Es ergeben sich aus den Wahrscheinlichkeitsbäumen u.a. auf Grund der Definition von bedingter Wahrscheinlichkeit:

$$p_A(B) = \frac{p(A \cap B)}{p(A)}$$
 (Wahrscheinlichkeit des Ereignisses B unter der Voraussetzung des Ereignisses A)

die folgenden Vierfeldertafeln

a) Vierfeldertafeln der Schnittwahrscheinlichkeiten:

	Α	\overline{A}	
В	$p(A \cap B)$	$p(\overline{A} \cap B)$	p(<i>B</i>)
\overline{B}	$p(A \cap \overline{B})$	$p(\overline{A} \cap \overline{B})$	$p(\overline{B})$
	p(A)	$p(\overline{A})$	1

b) Vierfeldertafeln der bedingten Wahrscheinlichkeiten (Bedingung A):

	A	\overline{A}	
В	$p_A(B) = p(A \cap B)/p(A)$	$p_{\overline{A}}(B) = p(\overline{A} \cap B)/p(\overline{A})$	
\overline{B}	$p_A(\overline{B}) = p(A \cap \overline{B})/p(A)$	$p_{\overline{A}}(\overline{B}) = p(\overline{A} \cap \overline{B})/p(\overline{A})$	
	1	1	

c) Vierfeldertafeln der bedingten Wahrscheinlichkeiten (Bedingung B):

	A	\overline{A}	
В	$p_B(A) = p(A \cap B)/p(B)$	$p_B(\overline{A}) = p(\overline{A} \cap B)/p(B)$	1
\overline{B}	$p_{\overline{B}}(A) = p(A \cap \overline{B})/p(\overline{B})$	$p_{\overline{B}}(\overline{A}) = p(\overline{A} \cap \overline{B})/p(\overline{B})$	1

Insgesamt ergibt sich die Tabelle/Vierfeldertafel:

	Wahrscheinlichkeiten			Bedingte Wahrscheinlichkeiten		
	A	\overline{A}		Α	\overline{A}	
В	$p(A \cap B)$	$p(\overline{A} \cap B)$	p(<i>B</i>)	$p_B(A) = p(A \cap B)/p(B)$	$p_{B}(\overline{A}) = p(\overline{A} \cap B)/p(B)$	1
\overline{B}	$p(A \cap \overline{B})$	$p(\overline{A} \cap \overline{B})$	$p(\overline{B})$	$p_{\overline{B}}(A) = p(A \cap \overline{B})/p(\overline{B})$	$p_{\overline{B}}(\overline{A}) = p(\overline{A} \cap \overline{B})/p(\overline{B})$	1
	p(A)	$p(\overline{A})$	1			
В	$p_A(B) = p(A \cap B)/p(A)$	$p_{\overline{A}}(B) = p(\overline{A} \cap B)/p(\overline{A})$				
\overline{B}	$p_A(\overline{B}) = p(A \cap \overline{B})/p(A)$	$p_{\overline{A}}(\overline{B}) = p(\overline{A} \cap \overline{B})/p(\overline{A})$				
	1	1				
	Bedingte Wahrscheinlichkeiten					

Ausschnitt und Rechenweise ergeben sich aus dem Nachstehenden:

	Α		
В	$p(A \cap B)$	$p(A \cap B)$	
\overline{B}	$p(A \cap \overline{B})$		$p(A \cap \overline{B})$
	p(A)	p(A)	p(A) □
В	$p_A(B) = p(A \cap B)/p(A)$	$p_A(B) = p(A \cap B)/p(A)$	
\overline{B}	$p_A(\overline{B}) = p(A \cap \overline{B})/p(A)$		$p_A(\overline{B}) = p(A \cap \overline{B})/p(A)$
	1		