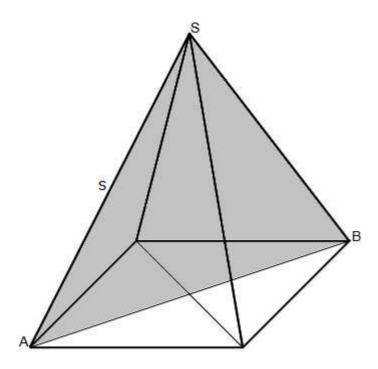
Michael Buhlmann

Mathematikaufgaben

> Geometrie/Körperberechnung

> Quadratische Pyramide

Aufgabe: Der Diagonalschnitt einer quadratischen Pyramide ist das gleichseitige Dreieck ΔABS mit Seitenlänge s = 12 cm. Berechne Oberflächeninhalt und Volumen der Pyramide.



Lösung: I. Auch innerhalb der Körperberechnung spielen ebene rechtwinklige Dreiecke eine wichtige Rolle. In einem <u>rechtwinkligen Dreieck</u> Δ ABC mit den Seiten a, b, c und den Winkeln α , β , γ bei γ = 90° heißen a und b Katheten, c Hypotenuse. Die Kathete, die gegenüber einem Winkel α oder β liegt, heißt Gegenkathete (bei Winkel α Seite a, bei Winkel β Seite b), die Kathete, die an einem Winkel α oder β liegt, heißt Ankathete (bei Winkel α Seite b, bei Winkel β Seite a). Dann gelten der Satz des Pythagoras:

$$c^2 = a^2 + b^2 \Rightarrow c = \sqrt{a^2 + b^2}$$
 (Hypotenuse)
 $a^2 = c^2 - b^2 \Rightarrow a = \sqrt{c^2 - b^2}$ (Kathete)
 $b^2 = c^2 - a^2 \Rightarrow b = \sqrt{c^2 - a^2}$ (Kathete)

und die trigonometrischen Beziehungen (Sinus, Kosinus, Tangens):

$$\sin \alpha = \frac{a}{c} = \frac{Gegenkathe\ te}{Hypotenuse}, \ \cos \alpha = \frac{b}{c} = \frac{Ankathete}{Hypotenuse}, \ \tan \alpha = \frac{a}{b} = \frac{Gegenkathe\ te}{Ankathete} \ (Winkel\ \alpha)$$

$$\sin \beta = \frac{b}{c} = \frac{Gegenkathe\ te}{Hypotenuse}, \ \cos \beta = \frac{a}{c} = \frac{Ankathete}{Hypotenuse}, \ \tan \beta = \frac{b}{a} = \frac{Gegenkathe\ te}{Ankathete} \ (Winkel\ \beta)$$

$$\sin \alpha = \cos \beta, \ \cos \alpha = \sin \beta, \ \tan \alpha = \frac{1}{\tan \beta}, \ \tan \beta = \frac{1}{\tan \alpha}.$$

Mit den Dreieckswinkeln α , β und $\gamma = 90^{\circ}$ gelten noch die Beziehungen:

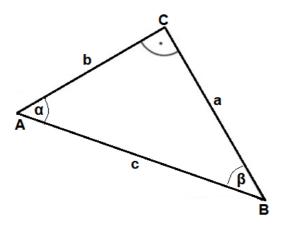
$$\alpha + \beta = 90^{\circ}, \ \alpha = 90^{\circ} - \beta, \ \beta = 90^{\circ} - \alpha.$$

Mit den Seiten a, b, c des Dreiecks errechnet sich dessen Umfang:

$$u = a + b + c$$
.

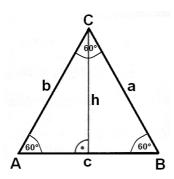
Mit den Katheten a, b ermittelt sich der Flächeninhalt der Dreiecksfläche:

$$A = \frac{1}{2}ab.$$

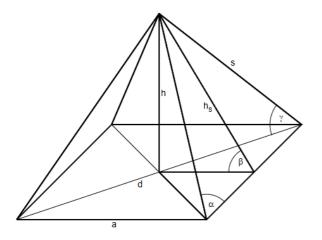


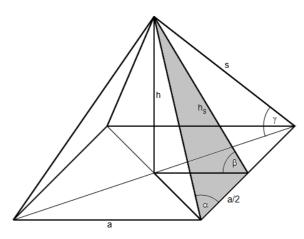
II. <u>Gleichseitige Dreiecke</u> \triangle ABC haben (drei) gleich lange Seiten a = b = c und gleiche Winkel $\alpha = \beta = \gamma = 60^{\circ}$. Für Dreieckshöhe h, Umfang u und Flächeninhalt A gilt:

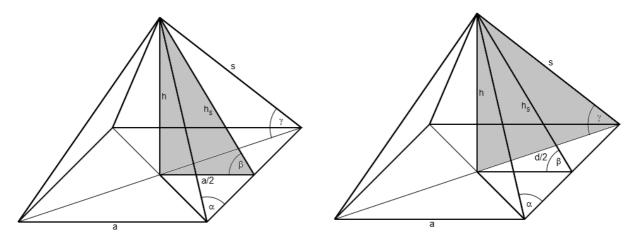
$$h = \frac{a}{2}\sqrt{3}$$
, u = 3a, $A = \frac{a^2\sqrt{3}}{4}$.



III. Eine Pyramide mit quadratischer Grundfläche ist durch die Seitenlänge a des Quadrats und durch die Pyramidenhöhe h bestimmt, weiter durch die Seitenhöhe h_s , die Kantenlänge s, die Oberfläche O, die Mantelfläche M, die Grundfläche G und das Volumen V.







Quadratische Pyramide, rechtwinklige Dreiecke in Pyramide

In einer regelmäßigen <u>quadratischen Pyramide</u> gelten dann die folgenden Beziehungen:

Quadratische Pyramide

Grundfläche, Grundkante	$G = a^2$	$a = \sqrt{G}$	
Grundflächen- diagonale	$d = a\sqrt{2}$	$a = \frac{d}{\sqrt{2}}$	
Seitenhöhe	$h_s^2 = h^2 + \left(\frac{a}{2}\right)^2$	$h^2 = h_s^2 - \left(\frac{a}{2}\right)^2$	$\left(\frac{a}{2}\right)^2 = h_s^2 - h^2$
Seitenkante	$s^2 = h_s^2 + \left(\frac{a}{2}\right)^2$	$h_s^2 = s^2 - \left(\frac{a}{2}\right)^2$	$\left(\frac{a}{2}\right)^2 = s^2 - h_s^2$
Pyramiden- höhe	$s^2 = h^2 + \left(\frac{d}{2}\right)^2$	$h^2 = s^2 - \left(\frac{d}{2}\right)^2$	$\left(\frac{d}{2}\right)^2 = s^2 - h^2$
Mantelfläche	$M = 2ah_s$	$h_s = \frac{M}{2a}$	$a = \frac{M}{2h_s}$
	$O = G + M = a^2 + 2ah_s = a(a + 2h_s)$		
Oberfläche	G = O - M	M = O - G	·
		$h_s = \frac{O - a^2}{2a}$	$a = -h_s + \sqrt{h_s^2 + O}$
Volumen	$V = \frac{1}{3}G \cdot h = \frac{1}{3}a^2h$	$a = \sqrt{\frac{3V}{h}}$	$h = \frac{3V}{a^2}$
Winkel zwischen Kante s und Grund- kante a	$\sin\alpha = \frac{h_s}{s}$	$\cos\alpha = \frac{a}{2s}$	$\tan \alpha = \frac{2h_s}{a}$
Winkel zwischen Seitenhöhe h _s und Grundfläche G	$\sin \beta = \frac{h}{h_s}$	$\cos \beta = \frac{a}{2h_s}$	$\tan \beta = \frac{2h}{a}$
Winkel zwischen Kante s und Grund- fläche G	$\sin \gamma = \frac{h}{s}$	$\cos \gamma = \frac{d}{2s}$	$\tan \gamma = \frac{2h}{d}$

IV. Im gleichseitigen Dreieck \triangle ABS stellt wegen des Dreiecks als Diagonalschnitt s = 12 cm die <u>Pyramidenseitenkante</u> s und die <u>Grundflächendiagonale</u> d der Pyramide dar: s = 12 cm, d = 12 cm.

VI. Die Höhe h des gleichseitigen Dreiecks ist gleichzeitig die Pyramidenhöhe. Es gilt:

$$h = \frac{a}{2}\sqrt{3} = \frac{12}{2}\sqrt{3} = 10,39 \text{ cm}.$$

VI. Aus der Grundflächendiagonale d errechnet sich die Länge der <u>Pyramidengrundkante</u> a vermöge:

$$a = \frac{d}{\sqrt{2}} = \frac{12}{\sqrt{2}} = 8,49 \text{ cm}.$$

VII. Wegen der Grundkantenlänge a = 8,49 cm ist die <u>Grundfläche</u> der Pyramide $G = a^2 = 8,49^2 = 72,08 \text{ cm}^2$ groß.

VIII. Aus Grundkante a = 8,49 cm und Seitenkante s = 12 cm ergibt sich mit dem rechtwinkligen Mantelflächendreieck der Seiten a/2, h_s und s die Länge der Seitenhöhe h_s nach dem Satz des Pythagoras:

$$h_s^2 = s^2 - \left(\frac{a}{2}\right)^2 \Rightarrow h_s^2 = 12^2 - 4,25^2 = 125,94 \Rightarrow h_s = \sqrt{125,94} = 11,22 \text{ cm}.$$

IX. Der <u>Pyramidenoberflächeninhalt</u> O = G + M bestimmt aus Grundfläche G und Mantelfläche M. Der Inhalt der Grundfläche G ist bekannt als: G = 72,08 cm². Für die Mantelfläche M gilt mit $h_s = 11,22$ cm:

 $M = 2ah_s = 2.8,49.11,22 = 190,52 \text{ cm}^2$.

Der Inhalt der Oberfläche ist mithin:

$$O = G + M = 72,08 + 190,52 = 262,6 \text{ cm}^2$$
.

VII. Das <u>Pyramidenvolumen</u> ergibt sich mit der Grundfläche $G = 72,08 \text{ cm}^2$ und der Pyramidenhöhe h = 10.39 cm als:

$$V = \frac{1}{3}G \cdot h = \frac{1}{3} \cdot 72,08 \cdot 10,39 = 249,64 \text{ cm}^3 \approx 249,6 \text{ cm}^3.$$

www.michael-buhlmann.de / 12.2019 / Aufgabe 918