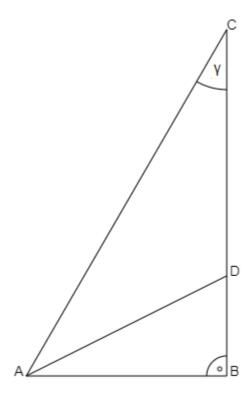
Michael Buhlmann

Mathematikaufgaben

> Geometrie/Trigonometrie

> Abstand Ecke - Seite

Aufgabe: Die rechtwinkligen Dreiecke ABC und ABD haben die Seite \overline{AB} gemeinsam. Im Dreieck ABC gilt: $\gamma = 32,4^{\circ}$, im Dreieck ABD: $\overline{BD} = 5,6$ cm. Außerdem halbiert die Seite \overline{AD} den Winkel α an der Ecke A des Dreiecks ABC.



Berechne den Abstand der Ecke B zur Seite \overline{AD} im Dreieck ABC.

Lösung: I. In einem <u>rechtwinkligen Dreieck</u> ΔABC mit den Seiten a, b, c und den Winkeln α , β , γ bei γ = 90° heißen a und b Katheten, c Hypotenuse. Die Kathete, die gegenüber einem Winkel α oder β liegt, heißt Gegenkathete (bei Winkel α Seite a, bei Winkel β Seite b), die Kathete, die an einem Winkel α oder β liegt, heißt Ankathete (bei Winkel α Seite b, bei Winkel β Seite a). Dann gelten der Satz des Pythagoras:

$$c^2 = a^2 + b^2 \Rightarrow c = \sqrt{a^2 + b^2}$$
 (Hypotenuse)
 $a^2 = c^2 - b^2 \Rightarrow a = \sqrt{c^2 - b^2}$ (Kathete)
 $b^2 = c^2 - a^2 \Rightarrow b = \sqrt{c^2 - a^2}$ (Kathete)

und die trigonometrischen Beziehungen (Sinus, Kosinus, Tangens):

$$\sin \alpha = \frac{a}{c} = \frac{Gegenkathe \, te}{Hypotenuse}$$
, $\cos \alpha = \frac{b}{c} = \frac{Ankathete}{Hypotenuse}$, $\tan \alpha = \frac{a}{b} = \frac{Gegenkathe \, te}{Ankathete}$ (Winkel α)

$$\sin \beta = \frac{b}{c} = \frac{Gegenkathe \, te}{Hypotenuse}, \ \cos \beta = \frac{a}{c} = \frac{Ankathete}{Hypotenuse}, \ \tan \beta = \frac{b}{a} = \frac{Gegenkathe \, te}{Ankathete}$$
 (Winkel β)
$$\sin \alpha = \cos \beta, \ \cos \alpha = \sin \beta, \ \tan \alpha = \frac{1}{\tan \beta}, \ \tan \beta = \frac{1}{\tan \alpha}.$$

Mit den Dreieckswinkeln α , β und γ = 90° gelten noch die Beziehungen:

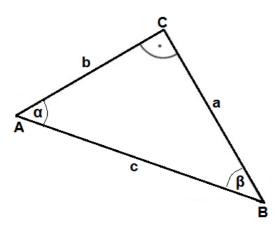
$$\alpha + \beta = 90^{\circ}$$
, $\alpha = 90^{\circ} - \beta$, $\beta = 90^{\circ} - \alpha$.

Mit den Seiten a, b, c des Dreiecks errechnet sich dessen Umfang:

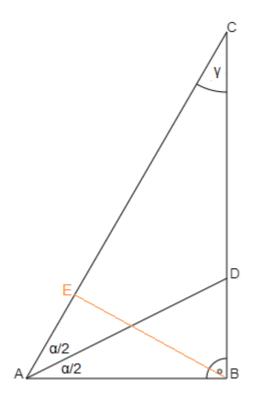
$$u = a + b + c$$
.

Mit den Katheten a, b ermittelt sich der Flächeninhalt der Dreiecksfläche:

$$A = \frac{1}{2}ab.$$



II. Wir tragen zunächst die zwei Winkel $\alpha/2$ und den Abstand BE zwischen der Ecke und der Seite \overline{AD} im Dreieck ΔABC in die Zeichnung ein



und erhalten mit ΔABE und ΔBCE zwei rechtwinklige Dreiecke, die wir zur Berechnung des Abstandes nutzen können.

III. Im rechtwinkligen <u>Dreieck</u> ΔABC ist:

$$\alpha = 90^{\circ} - y = 90^{\circ} - 32,4^{\circ} = 57,6^{\circ}$$
.

Der halbe Winkel ist – wegen der Winkelhalbierenden \overline{AD} – damit $\alpha/2 = 57.6^{\circ}:2 = 28.8^{\circ}$ groß.

IV. Im rechtwinkligen <u>Dreieck</u> \triangle ABD haben wir den Winkel $\alpha/2 = 28.8^{\circ}$ und die Seitenlänge BD = 5.6 cm, so dass mit Hilfe des Tangens die Ankathete \overline{AB} berechnet werden kann:

$$\tan\left(\frac{\alpha}{2}\right) = \frac{\overline{BD}}{\overline{AB}} \Rightarrow \tan 28.8^{\circ} = \frac{5.6}{\overline{AB}} \Rightarrow \overline{AB} = \frac{5.6}{\tan 28.8^{\circ}} = 10.2 \text{ cm}.$$

V. Im schon angesprochenen rechtwinkligen <u>Dreieck</u> $\triangle ABE$ mit dem rechten Winkel bei E (Abstand Ecke-Seite) ist nunmehr der Winkel $\alpha = 57.6^{\circ}$ und die Hypotenuse $\overline{AB} = 10.2$ cm vorhanden. Wir erhalten die Dreieckseite \overline{BE} als Gegenkathete mit Hilfe des Sinus:

$$\sin \alpha = \frac{\overline{BE}}{\overline{AB}} \Rightarrow \sin 57.6^{\circ} = \frac{\overline{BE}}{10.2} \Rightarrow \overline{BE} = 10.2 \cdot \sin 57.6^{\circ} = 8.6 \text{ cm}.$$

Die Seite \overline{BE} = 8,6 cm gibt dann den <u>Abstand</u> der Ecke B zur Seite \overline{AD} im Dreieck ABC an.

www.michael-buhlmann.de / 02.2019 / Aufgabe 782