Michael Buhlmann

Mathematikaufgaben

> Analysis

> Wendetangenten

Aufgabe: In welchem Punkt schneiden sich die zwei Wendetangenten der ganz rationalen Funktion 4. Grades:

$$f(x) = \frac{1}{12}x^4 - 2x^2 - \frac{1}{3}x$$
?

Lösung: I. Allgemein lässt sich ein <u>Wendepunkt</u> einer Funktion f(x) bestimmen vermittelst der 2. und 3. Ableitung f''(x) und f'''(x):

 $f''(x) = 0 \Rightarrow x_1, \dots$ als mögliche Wendepunkte der Funktion (notwendige Bedingung)

 $f'''(x_1) \neq 0 \Rightarrow$ Wendepunkt W(x₁|f(x₁)) (hinreichende Bedingung)

bzw.:

 $f'''(x_1) > 0 => Wendepunkt W(x_1|f(x_1))$ mit Übergang von einer Rechts- in eine Linkskrümmung

 $f'''(x_1) < 0 =>$ Wendepunkt $W(x_1|f(x_1))$ mit Übergang von einer Links- in eine Rechtskrümmung usw.

Ist x_1 ein Wendepunkt der Funktion f(x), so ergibt sich die Gleichung der <u>Wendetangente</u> am einfachsten aus der Tangentenformel:

$$t_W$$
: $y = f'(x_1)(x-x_1) + f(x_1)$

unter Bestimmung der Werte $f(x_1)$ und $f'(x_1)$. Im Wendepunkt hat zudem die Funktion f(x) den (lokal) kleinsten oder größten Ableitungswert $f'(x_1)$, die Wendetangente schneidet dort berührend die Funktion.

II. Wir bestimmen zunächst die zwei Wendepunkte der ganz rationalen Funktion 4. Grades

$$f(x) = \frac{1}{12}x^4 - 2x^2 - \frac{1}{3}x$$
, indem wir die ersten drei Ableitungen bilden (Ableiten gemäß Summen-

regel, Potenzregel und Regel mit konstantem Faktor):

$$f'(x) = \frac{1}{3}x^3 - 4x - \frac{1}{3}$$

$$f''(x) = x^2 - 4$$

$$f'''(x) = 2x.$$

Nullsetzen der 2. Ableitung (notwendige Bedingung) führt auf die Gleichungsumformungen:

$$f''(x) = 0 \Leftrightarrow x^2 - 4 = 0 \Leftrightarrow x^2 = 4 \Leftrightarrow x = \pm 2$$
,

so dass die Stellen x=-2 und x=2 mögliche Wendepunkte der Funktion sind. Mit dem Einsetzen der gefundenen Stellen in die 3. Ableitung (hinreichende Bedingung):

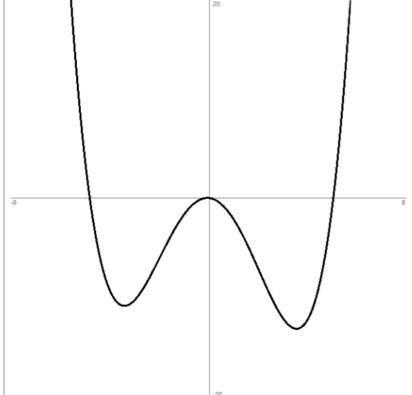
$$f'''(-2) = 2 \cdot (-2) = -4 \neq 0$$

$$f'''(2) = 2 \cdot 2 = 4 \neq 0$$

liegen dort tatsächlich Wendepunkte vor. Wegen $f(-2) = \frac{1}{12} \cdot (-2)^4 - 2 \cdot (-2)^2 - \frac{1}{3} \cdot (-2) = -6$ und $f(2) = \frac{1}{12} \cdot 2^4 - 2 \cdot 2^2 - \frac{1}{3} \cdot 2 = -22/3$ lauten die Wendepunkte: $W_1(-2|-6)$, $W_2(2|-22/3)$.

III. Wertetabelle, Zeichnung der Funktion f(x):

x	y = f(x)	f'(x)	f"(x)	Besondere Kurvenpunkte
-4.82	0.1206	-18.38	19.23	Nullstelle N(-4.82 0)
-3.43	-10.8521	-0.06	7.76	Tiefpunkt T(-3.43 -10.85)
-2	-6	5	0	Wendepunkt W(-2 -6)
-0.17	-0.0011	0.35	-3.97	Nullstelle N(-0.17 0)
-0.09	0.0138	0.03	-3.99	Hochpunkt H(-0.09 0.01)
0	0	-0.33	-4	Nullstelle N(0 0) = Schnittpunkt $S_y(0 0)$
2	-7.2767	-5.67	0	Wendepunkt W(2 -7.33)
3.5	-13.1615	-0.04	8.25	Tiefpunkt T(3.5 -13.16)
4.98	-0.0058	20.92	20.8	Nullstelle N(4.98 0)
			20	



IV. Die <u>Wendetangenten</u> sind die Tangenten an die Funktion f(x) an den Stellen x=-2 und x= 2. Für den Wendepunkt W₁(-2|-6) ergibt sich wegen $f'(-2) = \frac{1}{3} \cdot (-2)^3 - 4 \cdot (-2) - \frac{1}{3} = 5$ und f(-2) = -6:

$$t_1$$
: $y = f'(-2)(x+2) + f(-2) = 5(x+2) - 6 = 5x + 10 - 6 = 5x+4$

als Gleichung der Wendetangente. Wegen $f'(2) = = \frac{1}{3} \cdot 2^3 - 4 \cdot 2 - \frac{1}{3} = -\frac{17}{3}$ und $f(2) = -\frac{22}{3}$ folgt:

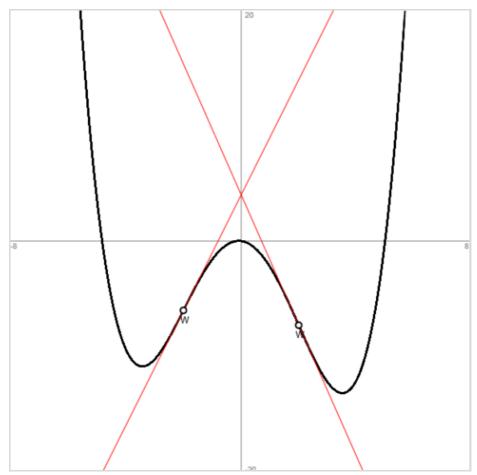
$$t_2$$
: $y = f'(2)(x-2) + f(2) = -\frac{17}{3}(x-2) - \frac{22}{3} = -\frac{17}{3}x + \frac{34}{3} - \frac{22}{3} = -\frac{17}{3}x + 4$

als Gleichung der Wendetangente zum Wendepunkt W₂(2|-22/3).

V. Zur Ermittlung des <u>Schnittpunkt</u>s der beiden Wendetangenten setzen wir die Tangentengleichungen von t₁ und t₂ gleich und erhalten:

$$5x+4 = -\frac{17}{3}x + 4 \Leftrightarrow 15x+12 = -17x+12 \Leftrightarrow 15x = -17x \Leftrightarrow 32x = 0 \Leftrightarrow x = 0$$

als x-Koordinate des Schnittpunkts. Einsetzen z.B. in t_1 : y = 5x+4 liefert: y = 4, so dass der Schnittpunkt der Wendetangenten sich als S(0|4) darstellt. Der Schnittpunkt liegt damit auf der y-Achse des x-y-Koordinatensystems, seine x-Koordinate genau zwischen den x-Koordinaten der beiden Wendepunkte.



www.michael-buhlmann.de / 07.2018 / Aufgabe 594