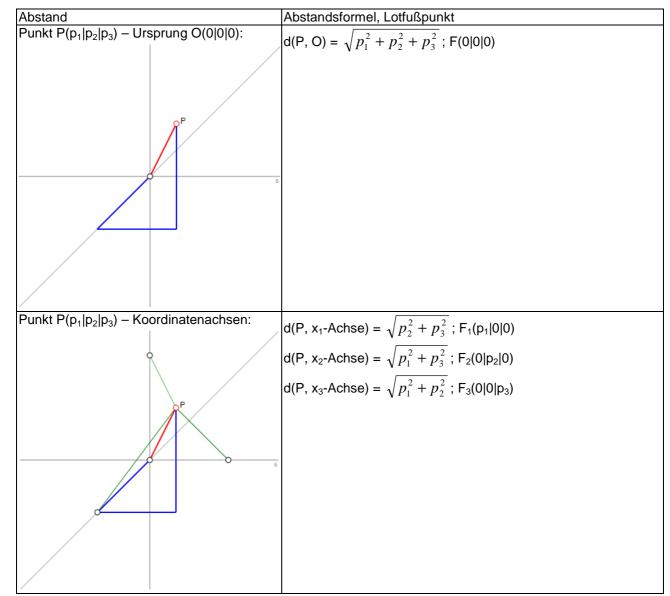
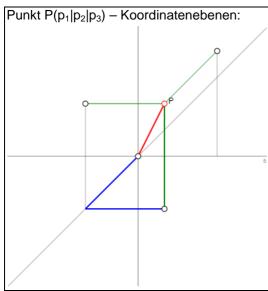
Mathematik > Vektorrechnung

> Abstand Punkt-Elemente des Koordinatensystems

Abstand Punkt-Koordinatenursprung/Koordinatenachsen/Koordinatenebenen

Innerhalb des dreidimensionalen reellen kartesischen x_1 - x_2 - x_3 -Vektorraums bzw. Koordinatensystems ist der <u>Koordinatenursprung</u> von der Form O(0|0|0), die <u>Koordinatenachsen</u> sind Geraden vom Typ (Parameterform):

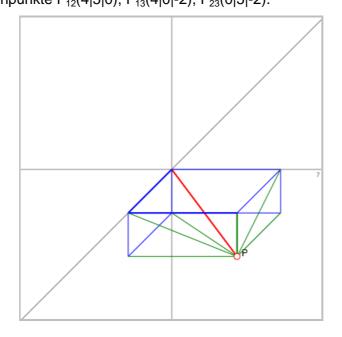

$$x_1$$
-Achse: $x = t \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, x_2 -Achse: $x = t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, x_3 -Achse: $x = t \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$,


die Koordinatenebenen (Grundebenen) das Aussehen (Koordinatenform):

$$x_1-x_2$$
-Ebene: $x_3 = 0$, x_1-x_3 -Ebene: $x_2 = 0$, x_2-x_3 -Ebene: $x_1 = 0$.

Punkte haben die Form $P(p_1|p_2|p_3)$.

Dann gilt für die <u>Abstände</u> eines Punktes zu Koordinatenursprung, Koordinatenachsen und Koordinatenebenen die folgende Übersicht:


d(P, x₁-x₂-Ebene) =
$$\sqrt{p_3^2} = |p_3|$$
; F₁₂(p₁|p₂|0)
d(P, x₁-x₃-Ebene) = $\sqrt{p_2^2} = |p_2|$; F₁₃(p₁|0|p₃)
d(P, x₂-x₃-Ebene) = $\sqrt{p_1^2} = |p_1|$; F₂₃(0|p₂|p₃)

Die Abstände sind die Längen der Vektoren zwischen jeweiligem Fußpunkt F. und dem vorgegebenen Punkt P.

Beispiel:

Der Punkt P(4|5|-2) hat zu den Elementen Ursprung, Achsen, Grundebenen des kartesischen Koordinatensystems folgende Abstände, wobei diese sich letztlich als Länge eines Vektors zwischen Punkt P und Fußpunkt F als Ursprung, Achsen- oder Grundebenenpunkt darstellen (siehe die Punktkoordinaten in der Quaderdarstellung). Es ergibt sich:

$$\begin{split} &\text{d(P, O)} = \sqrt{4^2 + 5^2 + 2^2} = 6,71 \text{ LE} \\ &\text{d(P, x_1-Achse)} = \sqrt{5^2 + 2^2} = 5,39 \text{ LE; d(P, x_2-Achse)} = 4,47 \text{ LE; d(P, x_3-Achse)} = 6,4 \text{ LE} \\ &\text{d(P, x_1-x_2-Ebene)} = |-2| = 2 \text{ LE; d(P, x_1-x_3-Ebene)} = 5 \text{: d(P, x_2-x_3-Ebene)} = 4 \text{ LE.} \\ &\text{Die dazugehörigen Fußpunkte lauten: Ursprung F(0|0|0); Achsenpunkte F}_1(4|0|0), F}_2(0|5|0), F}_3(0|0|-2); Grundebenenpunkte F}_1(4|5|0), F}_3(4|0|-2), F}_{23}(0|5|-2). \end{split}$$

www.michael-buhlmann.de / Michael Buhlmann, 10.2019